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Introduction to Genetic Programming
Genetic programming (GP) is a machine learning technique based on the theory of evolution.  

Solutions to a problem are discovered through combining small blocks of code and evaluating  

the result. The goal is to produce a program that performs a task specified by the designer.

GP begins by producing a generation of random programs (genomes) composed of 

designer specified primitives. The primitives must be chosen to give the program sufficient  

perceptual, computational, and locomotive ability to effectively perform the task. Primitives  

that require arguments comprise the function set, while primitives without arguments 

comprise the terminal set. Each program can be represented by a tree made from the  

primitives in the  function and terminal set, where each primitive is represented by a node.  

Program trees are the digital equivalent of genetic material. Figure 1 shows an example of a  

genome that was generated from primitives that are designed to evolve a wall-following  

vehicle. The 'if-wall-ahead' primitive evaluates the first subtree if there is currently a wall  

directly in front of the robot, or evaluates the second subtree otherwise. The primitives 'left',  

'right', and 'forward' cause the robot to turn left, turn right, or move forward respectively. A  

tree is evaluated by starting at the top node and branching downward. The program tree in  

Figure 1 represents an ideal control program for a wall following robot that has a single sensor  

on its front face. 

Figure 1: Decision Tree for a wall-following Robot

Primitives

Function Set: {if-wall-ahead}

Terminal Set: {right left forward}
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GP continues by using a fitness function to evaluate how well each randomly generated  

program performs a designer specified task. A fitness function returns each program's 

fitness score. Programs with higher fitness scores are more likely to contribute their genetic  

material to the next generation. Fitness functions must correctly separate more fit from less  

fit individuals, even if all individuals are relatively unfit. The fitness for a wall-following  

example might be the number of unique, wall-adjacent cells visited during a simulation.

GP produces the next generation of programs using genetic operators. First, members of 

the current generation are selected in proportion to their fitness. Genetic operators then  

simulate sexual reproduction (crossover) by combining sections of two program trees into a  

new program tree, asexual reproduction ( reproduction) by making an exact copy of a 

program tree, and biological mutation (mutation) by randomly changing sections of a 

subtree. These genetic operators produce a new generation that behaves similarly to most fit  

individuals from the previous generation. Figure 2 shows an example of each genetic operator  

taking parent program trees and creating new offspring from the “genetic material”. The next  

generation of programs is evaluated by the fitness function and is used to produce another  

Figure 2: Illustration of Genetic Operators

Crossover

Mutation

Reproduction



GPAA 3

generation. This process of evaluation and reproduction repeats until a specified number of  

generations is produced or a specified fitness level is met. The output of a genetic  

programming sequence is the most fit individual produced during any generation.

Project Summary
The purpose of this project is to use genetic programming to develop autonomous vehicle  

control programs that display perimeter maintenance behavior. Perimeter maintenance has  

the potential military application of using autonomous agents to protect an area or escort a  

convoy. The initial focus will be to implement a genetic programming framework. The  

framework will then be used to evolve guard agents that maintain a secure perimeter around 

a base that is being approached by enemy agents.

During early development, the project shall use crude, grid-based simulations to simplify the  

problem and to ascertain that the function set, terminal set, and fitness function are sufficient  

to meet the project's goals. As the project progresses, more complex simulators will be  

implemented until the simulations approximate the continuous navigation and  

environmental noise of a physical autonomous agent. If time remains, the project shall focus  

on implementing the evolved programs on a physical system.

Project Description
Genetic programming involves evaluating the fitness of thousands to millions of programs.  

Therefore, it is impractical to calculate each program's fitness by running it on a physical  

system because evolving a solution would take far too much time. By using a software  

simulator to evaluate fitness, a solution can evolve in a reasonable amount of time (as little as  

45 minutes on personal computer in preliminary runs). 

Top Level Description
The code written to connect software subcomponents will be written in Ruby to take  

advantage of Ruby's ability to easily interface with other languages. If a simulator written in a  

different language becomes necessary as the project progresses, interface code will be written  

rather than re-implementing the entire system in the new language.
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Figure 3 shows the relation of software subcomponents. To begin the simulation, a function 

set, a terminal set, and reproduction parameters are provided to the genetic programming  

evolutionary sequence (GPES) block, which organizes the progression of generations. The  

randomly produced genomes of the first generation are passed to a fitness function block that  

handles communication between the GPES and simulator subcomponents. The genomes are  

used to control guard agents in the simulator. The interaction of guard, enemy, and base  

agents within the simulator determines the fitness score of the genome. These fitness scores  

are passed back to the GPES, where a new generation initializes genomes by performing  

genetic operations on genomes of the previous generation. This process continues until  

generation N is evaluated for fitness. The final result is the program with the highest fitness  

from any generation.

Figure 3: Top Level Software Architecture of Genetic Programming System
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Subcomponent Descriptions

Function and Terminal Set

The following set is designed to be as small as possible to avoid redundancy (which adds  

inefficiency to the evolution process), while still allowing the agent to:

 know its distance from the base,

 move to catch enemies,

 make logical decisions based on sensor inputs. 

The function set includes:

 prog 

◦ accepts 2 subtrees,

◦ evaluates the subtrees in sequence,

◦ returns the value of the second evaluated subtree,

◦ allows multiple calculations and movements to be made each program iteration.

 ifGreater 

◦ accepts 4 subtrees,

◦ evaluates the 3rd or 4th subtree based on the value of the 1st and 2nd subtrees,

◦ pseudo code: if(1st > 2nd) then 3rd else 4th,

◦ returns the last evaluated subtree,

◦ allows agent to perform different actions based on sensor inputs.

 +, -, *, /, and %

◦ accept 2 subtrees,

◦ perform standard arithmetic calculation of evaluated subtree values,

◦ division by zero results in value '1' [1],

◦ allow agent to develop complex input weighting systems.
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The terminal set includes:

 perim 

◦ returns Manhattan distance from the base,

◦ allows agent make decisions according to its distance from the base.

 f, l, and r 

◦ cause agent to move forward (f), turn left (l),  or turn right (r),

◦ return same value as perim.

 I

◦  returns random integer (0-6),

◦ generated during creation of genome, not during execution of program.

Reproduction Parameters

The reproduction parameters specify values used during the progression of the GPES.  

Optimizing the parameters can improve the efficiency of the system by modifying the way it  

creates and evaluates genomes. The reproduction parameters include the following values:

• number of generations produced,

• number of genomes in each generation,

• maximum depth of each program tree,

• proportion of each genetic operator used to create a new generation.

Genome Class

The genome class creates and stores program trees to be analyzed by the fitness function.  

Objects created from this class must:

 create random program trees from the function and terminal sets,

 create program trees from parents using crossover, mutation, and reproduction,

 store an evaluated fitness value.
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The genetic material produced by this class may be used with a variety of programming  

languages. It is a common practice in this situation to use string representation  for the 

genomes [1]. Because strings are supported by most languages, the genome need not be  

converted into a different data structure. String representation also has the advantage of  

minimizing the space required to store a program. For example, the translation of the  

Pythagorean Theorem ( a2b2 ) into the Lisp programming language is:

(sqrt (+ (expt a 2) (expt b 2)))

This Lisp program can then be translated into program  

tree form as shown in Figure 4. To convert this program 

tree into a string representation, each primitive must be  

given a unique character to represent it:

 's' – square root, accepts 1 argument,

 '+' – addition, accepts 2 arguments,

 'e' – exponent, accepts 2 arguments,

 'a' – represents length of leg 'a' in a right triangle,

 'b' – represents length of leg 'b' in a right triangle,

 '2' – integer value 2.

Using these character representations, the genome  

object for this program would store the string  

“s+ea2eb2”. To execute the string representation in different languages, a string 

representation interpreter  must be written for each language.

Generation Class

The generation class creates and organizes genome objects.  Generation objects must:

 store an array of genome objects that represent the generation's members,

 create random genomes for the first generation,

 select parents for genetic operators based on the fitness scores,

 identify the most fit individual in the generation.

Figure 4: Tree Representation of 
Pythagorean Theorem
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After each genome in a generation is evaluated using the fitness function, a new generation  

object is created. The new generation calls the old generation to provide parent genomes  

using a combination of fitness proportional selection  and tournament selection. In 

fitness proportional selection, each genome's chance of being selected for reproduction is  

equal to its fitness score divided by the sum of all fitness scores in the generation. In  

tournament selection, a group of genomes is randomly selected (group size is specified in the  

reproduction parameters) and the genome with the highest fitness score is chosen for  

reproduction. The new generation uses these methods to create and store genomes until the  

population size (specified in the reproduction parameters) is met.

Genetic Programming Evolutionary Sequence (GPES) Class

The GPES class organizes the creation and storage of generation objects. Objects created from  

this class must:

 store an array of generation objects that represent a genealogy,

 organize the creation of generations with a specific number of genomes,

 organize the creation of a specific number of generations,

 send each genome to the fitness function for evaluation,

 present the most fit individual produced by the sequence.

When writing a script to perform a genetic programming sequence, this class eliminates the  

need to deal with genomes and generations directly. After each generation is produced, this  

class passes each genome of the current generation to the fitness function for evaluation.

Guard Class

The guard class is used to represent guard agents during simulation. Objects created from this  

class must:

 store a genome created from the GPES,

 use the genome as a means of controlling its movements during the simulation.

The guard class includes a string representation interpreter to execute a genome as a control  

program. Any time the interpreter evaluates a primitive that changes the state of the guard,  

that command is placed into a command buffer. The guard then executes one command per  
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simulation time-step until the command buffer is empty. The genome is only evaluated when  

the command buffer is empty.

Enemy Class

The enemy class represents enemy agents during the simulation. In early experiments, the  

control program for this class will be hard-coded to start near the edge of the simulation space  

and move directly toward the nearest base. During later experiments, the enemy class may be  

updated to include a string representation interpreter so the GPES can simultaneously evolve  

guards and enemies. Results from GP research suggest that co-evolution of opponents leads  

to results with less exploitable weaknesses [2].

Base Class

The base class represents the base agent during the simulation. The base does not need a  

control program because it will remain stationary during early experiments. Later in the  

project a control program may be implemented to allow the base to move randomly or in a  

specified direction to evolve more robust control programs for the guard agents that can  

protect moving convoys.

Simulator Class

The simulator class will be used by the fitness function to produce a fitness score that  

represents the genome's effectiveness as a perimeter maintenance control program. The  

simulator must:

 accept parameters to modify size, simulation time, rules for collision, etc.,

 accept objects created from the guard, enemy, and base classes,

 call agents to execute their control program during each step of the simulation,

 return an accurate fitness measure of the genome.
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During early experiments, the simulated environment shall be grid-based, only allowing  

agents to move north, south, east, or west. Figure 5 presents a visualization of the grid-based  

simulator in which each agent occupies a single square. The agents can move forward and  

turn left or right. Whenever two agents attempt to occupy the same square, a block of code  

containing collision rules will be called to resolve the collision. 

After the framework produces a controller that functions optimally in the grid-based domain,  

the simulator shall be rewritten to enable continuous movement. An increase in simulation  

complexity can often prevent optimal behaviors from evolving. Others [3] have solved this  

problem by using function and terminal sets that embody complex behaviors consisting of  

several steps. Eventually the simulator may include noise in the sensor measurements and in  

agent movement.

Fitness Function

The fitness function will be called by the GPES class and return the fitness value of each  

genome. The fitness function initializes guard agents, enemy agents, and base agents, then  

begins a simulation. The fitness score is calculated based on the guard agents' behavior during  

Figure 5: Visualization of Grid-World Simulator Running Perimeter Maintenance Simulation
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a simulation. When a guard captures a enemy its fitness score will increase. More points are  

awarded for capturing enemies further from the base. Negative points are given if enemies hit  

the base. Varying the values of these rewards will result in different guard behaviors. If large  

rewards are given for capturing an enemy far from the base, the guards will evolve to create a  

large but penetrable perimeter. If rewards are solely based on the number of enemies  

captured, the guards will cluster around the base. Therefore, it will be necessary to adjust  

rewards to yield effective guards.

Robotic Platform
If experimentation shows that a highly fit guard control program is able to evolve in a  

complex simulator environment, the project will proceed by attempting to implement the  

control program on a physical autonomous agent. For the platform to execute a genome  

created by the GPES, the software must:

 contain a string representation program interpreter,

 contain motor control routines that result in movement as specified by the function  

and terminal sets,

 contain sensor processing routines that produce the sensor data specified by the  

function and terminal sets.

Even if the simulation environment produces favorable results, robotic platforms generally do  

not behave as expected. To produce a functional robot, the simulator must be customized to  

precisely model the robot and target environment.

Literature Review

Perimeter Maintenance
Perimeter maintenance is a military application that uses autonomous guards to detect enemy  

agents as they approach a military vehicle or base. In [4], engineers use emergent behavior  

principals to develop perimeter maintenance robots. Information about the positions of  

nearby objects and the center of the perimeter is sufficient to produce perimeter maintenance  

behavior. The robots are designed to accept a perimeter size as input and revolve around the  

base at that distance. The percentage of the perimeter monitored is used to assess the quality  

of the control program.
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Testing was divided into two situations. In one test, enough agents were present to enable  

complete perimeter coverage. In another test, agents were incapable of covering the entire  

perimeter. A simple control program was used for the first situation, where each agent  

revolved around the perimeter in the same direction and navigated to avoid detecting other  

guards in its sensor range. The second situation demanded a more complex control program  

that optimizes coverage by navigating around perimeter and exhibiting a repulsion to other  

guard agents that decays over time. Although the results of these control programs were  

similar, each situation demanded a unique solution.

Simulations of the robots were run in the MobileSim simulator, which does not simulate the  

noise that occurs in physical systems. When the control programs were placed on physical  

robots, the robots did not behave as simulated due to the noise present in sensor  

measurements and the robot's movement. To create control programs that operate on  

physical robots, the development simulator must include realistic sensor noise.

Evolution of Cooperative Agents
Cooperative agents in genetic programming can evolve to cooperate explicitly through data  

exchange or implicitly through interaction in an environment. The effectiveness of  

cooperation depends on team composition and the task they are attempting to accomplish. In  

[5], Floreano and Keller outline the ideal conditions for evolving cooperative agents. For tasks  

that entail high-cost cooperation (an action that benefits the fitness of others at the expense of  

the individual), the best results occur when using teams of homogeneous agents and basing  

parent selection on the team's average fitness score. However, for tasks with low-cost  

cooperation, heterogeneous teams under individual fitness selection produce the best results.

In genetic programming, evolving communication through data exchange is difficult because  

agents cannot rely on each other to use a common language. Floreano and Keller [5] explain  

that because communication benefits the group and harms the individual that communicates,  

homogeneous teams under team selection are more likely to evolve communication. Naeini  

and Ghaziasgar [6] evolve communication in heterogeneous teams by making communication  

mandatory. When an agent requests information from another, the exchange benefits the  

receiving agent, and the transmitting agent cannot suppress the information.
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Evolving Agents in a Complex Environment
For evolutionary agents to develop useful reactions within an environment, information about  

the environment must be present in a useful form. Luke [3] uses genetic programming to  

develop a team of agents to play soccer in a noisy simulator, which is used to simulate soccer  

matches for the RoboCup software competition. The simulator provides a huge amount of  

data about the environment that is not directly useful for evolving strategies. Developing a fit  

solution using native interactions with the simulator would involve the simultaneous  

evolution of code that converts the simulator's data into a useful form, accounts for the noise  

present in the data, and executes soccer-playing strategy. Although genetic programming can  

work in this situation, the time required for evolution makes it impractical.

Luke [3] solves the problem by condensing complex environmental data and agent actions  

into elements in the primitive set [3]. For example, the 'intercept' primitive calculates the  

state of the ball and moves the robot to intercept it. The primitive set is large (29 elements),  

but provides environmental data and complex movements in an immediately useful form.  

This strategy reduces the time needed for evolution by allowing the evolutionary sequence to  

focus on developing soccer-playing strategies rather than data processing routines.

Preliminary Results
At the time of this proposal, basic forms of each subcomponent shown in Figure 3 have been  

implemented in Ruby. The existing GPES block has the ability to evolve a single population by  

sending each genome to the fitness function individually. The simulator is grid-based,  

implements collision detection, and supports the evaluation of a single genome at a time. 

Evolved Solutions
Early tests focused on developing a fitness function to evolve guard agents that perform  

intelligent perimeter maintenance in a grid-based domain. During these experiments, many  

factors contributed to the fitness score: 

• distance from the base when enemy is captured,

• number of enemies captured,

• whether or not the base was eliminated by enemies,

• whether or not guards collided with other agents.



GPAA 14

One fitness function that produces optimal perimeter maintenance agents is based solely on  

the distance from the base that an enemy is captured. Figure 6 shows a visualization of the  

perimeter created by the most fit guard agent produced in the GPES using this fitness  

function. At the beginning of each simulation, the agent moves to the location shown in  

Figure 6 and spins in place for the remainder of the simulation. The positioning shown allows  

the guards to maintain a large, perfect perimeter when their capture radius is 4 units. The 

result proves that the software framework is effective at evolving guards with perimeter  

maintenance behavior. 
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Figure 6: Perimeter Visualization of Guard with Fitness Function Based on Distance from the Base  
that Enemy was Captured

In real-life applications, it may be desirable for a group of autonomous agents to protect a  

perimeter where the radius is specified as parameter. To achieve this result, the fitness  

function is based solely on the number of enemies caught during a simulation, and the  

simulation must end if an enemy comes within the specified distance of the base. This fitness  

function leads to the solution found in Figure 7, which maximizes the guards' coverage of the  

base's perimeter by deploying to positions near the corner of the perimeter and remaining  

stationary for the remainder of the simulation.
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Figure 7: Perimeter Visualization of Guard with Fitness Function Based on Number of Enemies  
Captured Beyond 9 Units from the Base

Limitations
Although the solutions in Figures 6 and 7 optimize the fitness function, common sense  

suggests that if the guard agents revolve around the base they would be more effective. For the  

solution in Figure 6, moving around the base in the grid domain would force the guards to  

vacate the positions that maximize the average distance from the base at which enemies are  

captured. Similarly, for the solution in Figure 7, rotating around the base would lead to  

periods of time when only one side of a guard's capture area is defending the base's perimeter,  

rather than two sides when the guard is defending the corner. The marginal benefit gained by  

revolving around the base is outweighed by the disadvantage of suboptimal coverage while  

moving.

The source of these problems is the asymmetries caused by the grid-based domain. In a  

continuous domain, the guards would be able to revolve around the base while maintaining a  

radius that optimizes perimeter coverage. Additionally, the solution in Figure 7 is not ideal  

due to its predictability. In a practical situation, an enemy would learn to attack from a  

diagonal with 100% success. Co-evolution is a potential solution to the problem of predictable  
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guards. If guards begin to develop a predictable perimeter maintenance technique, the  

enemies would evolve to exploit the predictability. In response, the guards would have to  

evolve unpredictable solutions to increase their fitness.

Schedule
As discussed in the “Preliminary Results” section, portions of this project were completed  

prior to the creation of this proposal. The schedule will therefore be organized by completed  

work and future work. The primary goal of the project (i.e. simulated evolution of a guard  

agent in a noisy environment) is scheduled to be completed before spring break. Work on the  

robotic platform is placed after spring break but will only be pursued if early runs with the  

continuous simulator suggest that there will be enough time to complete it. If implementation  

on a robotic platform is pursued, research and part acquisition would occur in parallel with  

continuous domain simulations.

Week of Agenda

Completed Work

October 3 Genome Class

October 10 Generation Class

October 17 GPES Class

October 24 Grid-Based Simulator

October 31 Fitness Function, Terminal Set, Function Set, and Initial Simulations

November 7 Code Refactoring

November 14 Capstone Project Deliverables

November 21 Thanksgiving Break

Future Work

January 9 Enemy Co-evolution and Heterogeneous Teams

January 16 Continuous Simulator

January 23 Graphics for Continuous Simulator
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January 30 Interface Code for Continuous Simulator and Simulations

February 6 Add Noise to Continuous Simulator

February 13 Code Refactoring

February 20 Simulations with Noise, Modification of Fitness Function

February 27 Simulations with Modified Fitness Function

March 6 Collect Results and Create Presentation

March 13 Spring Break

March 20 Research Robotic Platform

March 27 Prepare Robotic Platform

April 3 Write Program Tree Interpreter for Robotic Platform

April 10 Load Evolved Program onto Robotic Platform and Debug

April 17 Evaluate Performance, Modify Simulator, New Simulations

April 24 Load Newly Evolved Program onto Robotic Platform
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